Silicon-based plasmonic waveguides.

نویسندگان

  • Alexey V Krasavin
  • Anatoly V Zayats
چکیده

We propose and comprehensively investigate Si-based plasmonic waveguides as a means to confine and manipulate photonic signals. The high refractive index of Si assures strong confinement and a very high level of photonic integration with achievable waveguide separations of the order of 10 nm and waveguide bends with 500 nm radius at telecommunication wavelengths, while using Al and Cu plasmonic material platforms, makes such waveguides fully compatible with existing CMOS fabrication processes. Their potential future in hybrid electronic/photonic chips is further reinforced as various configurations have been shown to compensate SPP propagation loss. The group velocity dispersion of such waveguides allows over 10 Tb/s signal transfer rates. The figures of merit allowing comparison of passive and active functionalities achievable with various waveguides have also been introduced.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degenerate four-wave mixing in silicon hybrid plasmonic waveguides.

Silicon-based plasmonic waveguides show high confinement well beyond the diffraction limit. Various devices have been demonstrated to outperform their dielectric counterparts at micrometer scales, such as linear modulators, capable of generating high field confinement and improving device efficiency by increasing access to nonlinear processes, limited by ohmic losses. By using hybridized plasmo...

متن کامل

Design and Simulation of a Metal-Insulator-Metal Filter Based on Plasmonic Split Ring

In this paper, a plasmonic filter made of a split ring, two U-shaped structures and two straight waveguides is designed and investigated. In the proposed structure, the split ring and U-shaped structures are situated between straight waveguides. Simulations are done based on FDTD method. Split ring, U-shaped structures and straight waveguides are made of air in the silver background. In the pro...

متن کامل

Butt-coupled interface between stoichiometric Si3N4 and thin-film plasmonic waveguides

Plasmonic technology has emerged as the most promising candidate to revolutionize future photonic-integrated-circuits (PICs) and deliver performance breakthroughs in diverse application areas by providing increased light-matter interaction at the nanometer scale, overcoming the diffraction limit. However, high insertion losses of plasmonic devices impede their practical deployment in PICs. To o...

متن کامل

Nonlinear optical model for strip plasmonic waveguides

This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core significantly depends on the layer thickness and has the dominant contribution to the effective third-or...

متن کامل

Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss.

Asymmetric directional coupling between a hybrid plasmonic waveguide with subwavelength field confinement and a conventional dielectric waveguide is investigated. The proposed hybrid coupler features short coupling length, high coupling efficiency, high extinction ratio, and low insertion loss; it can also be integrated into a silicon-based platform. This coupler can be potentially adopted for ...

متن کامل

Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides.

The realization of practical on-chip plasmonic devices will require efficient coupling of light into and out of surface plasmon waveguides over short length scales. In this letter, we report on low insertion loss for polymer-on-gold dielectric-loaded plasmonic waveguides end-coupled to silicon-on-insulator waveguides with a coupling efficiency of 79 ± 2% per transition at telecommunication wave...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 18 11  شماره 

صفحات  -

تاریخ انتشار 2010